Annihilator varieties of distinguished modules of reductive Lie algebras

نویسندگان

چکیده

We provide a micro-local necessary condition for distinction of admissible representations real reductive groups in the context spherical pairs. Let $\bf G$ be complex algebraic group, and H\subset subgroup. $\mathfrak{g},\mathfrak{h}$ denote Lie algebras H$, let $\mathfrak{h}^{\bot}$ annihilator $\mathfrak{h}$ $\mathfrak{g}^*$. A $\mathfrak{g}$-module is called $\mathfrak{h}$-distinguished if it admits non-zero $\mathfrak{h}$-invariant functional. show that maximal G$-orbit variety any irreducible intersects $\mathfrak{h}^{\bot}$. This generalizes result Vogan. apply this to Casselman-Wallach obtain information on branching problems, translation functors Jacquet modules. Further, we prove many cases as suggested by Prasad, $H$ symmetric subgroup group $G$, existence tempered $H$-distinguished representation $G$ implies generic $G$. Many models studied theory automorphic forms involve an additive character unipotent radical devised twisted version our theorem yields conditions those mixed models. Our method proof here inspired W-algebras. As application derive Rankin-Selberg, Bessel, Klyachko Shalika results are compatible with recent Gan-Gross-Prasad conjectures non-generic representations. also more general ease sphericity assumption subgroup, them local theta correspondence type II degenerate Whittaker

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutions of reductive Lie algebras

Let G be a reductive group over a field of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For k = C, Kostant and Rallis studied [17] properties of orbits, centralizers, and invariants related to the (−1) eigenspace p. In this paper, we generalise [17] to the case of good positive characteristic. Amon...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Nice Parabolic Subalgebras of Reductive Lie Algebras

This paper gives a classification of parabolic subalgebras of simple Lie algebras over C that are complexifications of parabolic subalgebras of real forms for which Lynch’s vanishing theorem for generalized Whittaker modules is non-vacuous. The paper also describes normal forms for the admissible characters in the sense of Lynch (at least in the quasi-split cases) and analyzes the important spe...

متن کامل

Minimal Faithful Representations of Reductive Lie Algebras

We prove an explicit formula for the invariant μ(g) for finite-dimensional semisimple, and reductive Lie algebras g over C. Here μ(g) is the minimal dimension of a faithful linear representation of g. The result can be used to study Dynkin’s classification of maximal reductive subalgebras of semisimple Lie algebras.

متن کامل

A Construction of Generalized Harish-chandra Modules for Locally Reductive Lie Algebras

We study cohomological induction for a pair (g, k), g being an infinite dimensional locally reductive Lie algebra and k ⊂ g being of the form k0 + Cg(k0), where k0 ⊂ g is a finite dimensional reductive in g subalgebra and Cg(k0) is the centralizer of k0 in g. We prove a general non-vanishing and k-finiteness theorem for the output. This yields in particular simple (g, k)-modules of finite type ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Sigma

سال: 2021

ISSN: ['2050-5094']

DOI: https://doi.org/10.1017/fms.2021.42